Dimensional analysis does not determine a mass exponent for metabolic scaling.

نویسندگان

  • J P Butler
  • H A Feldman
  • J J Fredberg
چکیده

In several recent article, Heusner used dimensional reasoning to derive important biological conclusions regarding the scaling of metabolism with body mass [Respir. Physiol. 48: 13-25, 1982; J. Appl. Physiol. 54: 867-873, 1983; Am. J. Physiol. 246 (Regulatory Integrative Comp. Physiol. 15): R839-R845, 1984]. We demonstrate errors in the derivation and show that dimensional analysis, correctly applied, not only fails to determine the mass scaling exponent but also fails to constrain the relationship to a power law at all.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Allometric exponents do not support a universal metabolic allometry.

The debate about the value of the allometric scaling exponent (b) relating metabolic rate to body mass (metabolic rate = a x mass(b)) is ongoing, with published evidence both for and against a 3/4-power scaling law continuing to accumulate. However, this debate often revolves around a dichotomous distinction between the 3/4-power exponent predicted by recent models of nutrient distribution netw...

متن کامل

Traditional allometric analysis fails to provide a valid predictive model for mammalian metabolic rates.

The field of biological allometry was energized by the publication in 1997 of a theoretical model purporting to explain 3/4-power scaling of metabolic rate with body mass in mammals. This 3/4-power scaling exponent, which was first reported by Max Kleiber in 1932, has been derived repeatedly in empirical research by independent investigators and has come to be known as 'Kleiber's Law'. The expo...

متن کامل

Exact finite-size scaling with corrections in the two-dimensional Ising model with special boundary conditions

The two-dimensional Ising model with Brascamp-Kunz boundary conditions has a partition function more amenable to analysis than its counterpart on a torus. This fact is exploited to exactly determine the full finite-size scaling behaviour of the Fisher zeroes of the model. Moreover, exact results are also determined for the scaling of the specific heat at criticality, for the specific-heat peak ...

متن کامل

The effects of temperature and activity on intraspecific scaling of metabolic rates in a lungless salamander.

The scaling of metabolic rate with body mass holds substantial predictive power as many biological processes depend on energy. A significant body of theory has been developed based on the assumption that metabolic rate scales with body mass as a power function with an exponent of 0.75, and that this scaling relationship is independent of temperature. Here we test this hypothesis at the intraspe...

متن کامل

Intraspecific metabolic scaling exponent depends on red blood cell size in fishes.

The metabolic-level boundaries (MLB) hypothesis and the cell metabolism (CM) hypothesis have been proposed to explain the body mass scaling of metabolic rate. The MLB hypothesis focuses mainly on the influence of the metabolic level on the relative importance of volume and surface area constraints. The CM hypothesis focuses on the variation of cell size as the body grows. The surface area to vo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The American journal of physiology

دوره 253 1 Pt 2  شماره 

صفحات  -

تاریخ انتشار 1987